### **Experimental Section**<sup>2</sup>

**5,6-Dihydro-7***H*,12*H*-**6-carbamyldibenz**[c,f]**azocine** (1).—A soln of KCNO (3.57 g, 0.044 mole) in H<sub>2</sub>O (55 ml) was added to a soln of 5,6-dihydro-7*H*,12*H*-dibenz[c,f]**azocine** ·HCl<sup>3</sup> (10.8 g, 0.044 mole) in H<sub>2</sub>O (6500 ml). After 15 days stirring at room temp, the reaction mixture afforded, when concd, a solid which was recrystd from EtOH to give 1 (6.6 g, 59.4%) as colorless crystals, mp 237-239°. Anal. (C<sub>15</sub>H<sub>18</sub>N<sub>2</sub>O) C, H, N.

5,7,12,13-Tetrahydro-6-carbamyldibenz[c,g] azonine (2).— Compound 2 was obtained similarly in 73.2% yield from 5,7,12,-13-tetrahydro-6*H*-dibenz[c,g] azonine  $\cdot$  HCl<sup>4</sup> (12 g, 0.046 mole) and KCNO (3.75 g, 0.046 mole) in H<sub>2</sub>O (2000 ml). Colorless crystals from 95% EtOH, mp 194–196°. *Anal.* (C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>O) C, H, N.

1-Ċyano-2,3-diphenylaziridine (3).—A soln of BrCN (20.36 g, 0.19 mole) in Et<sub>2</sub>O (80 ml) was dropped at 0-5° for 20 min into a soln of *cis*-2,3-diphenylaziridine<sup>6</sup> (31.2 g, 0.16 mole) and Et<sub>3</sub>N (19.4 g, 0.19 mole) in Et<sub>2</sub>O (400 ml). The mixture was stirred for 4 hr at room temp and then filtered, the cake was repeatedly washed with Et<sub>2</sub>O, and the combined filtrates were evapd to dryness. The residue was taken up with hexane and filtered to give 3 (33 g, 94%) as a colorless solid, mp 116-117°. Anal. (C<sub>13</sub>-H<sub>12</sub>N<sub>2</sub>) C, H, N.

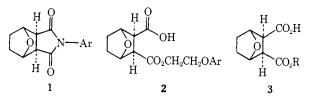
1-Carbamyl-2,3-diphenylaziridine (4).—A mixture of 3 (41.3 g, 0.187 mole), NaOH (75 g), H<sub>2</sub>O (130 ml), and dioxane (950 ml) was stirred for 7 days at room temp and then for 24 hr at 50°. The resulting cloudy soln was evapd to dryness under reduced pressure, and the residue was taken up with H<sub>2</sub>O and little Et<sub>2</sub>O and then recrystd from C<sub>6</sub>H<sub>6</sub> to give 4 (11.2 g, 25%) as colorless crystals, mp 158–160°. Anal. (C<sub>15</sub>H<sub>14</sub>N<sub>2</sub>O) C, H, N.

(2) Melting points are corrected and were taken on a Buchi capillary melting point apparatus. All compounds were analyzed for C, H, N and anal. results were within  $\pm 0.4\%$  of the theoretical values.

(3) G. Pala, A. Mantegani, and E. Zugna, Tetrahedron, 26, 1275 (1970).

(4) G. Pala, E. Crescenzi, and G. Bietti, *ibid.*, in press.

(5) A. Weissberger and H. Bach, Chem. Ber., 64B, 1095 (1931).


# Some Derivatives of 7-Oxabicyclo[2.2.1]heptaneexo-cis-2,3-dicarboxylic Acid

SAMUEL J. DOMINIANNI\* AND RONALD L. YOUNG

The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206

## Received August 15, 1970

Recently some 7-oxabicyclo [2.2.1] heptane-2,3-dicarboximides (1) with anticonvulsant activity were described.<sup>1</sup> Some aryloxyethyl esters 2 were also reported<sup>2</sup> as plant growth regulators. We record herein the preparation of additional examples of 1 and of some mono esters 3, all of which proved to be highly toxic CNS depressants (Table I).



#### **Experimental Section**

*N*-Fluoroarylimides. 1.—A mixture of equimolar amts of 7-oxabicyclo[2.2.1]heptane-*exo-cis*-2,3-dicarboxylic anhydride and the appropriate fluoroaniline was heated without solvent at

TABLE I

|       |                                                                  |                                                  |           | Approx <sup>c</sup> |
|-------|------------------------------------------------------------------|--------------------------------------------------|-----------|---------------------|
|       |                                                                  |                                                  | Mp, b     | LD,                 |
| Compd | R or Ar                                                          | Formula <sup>a</sup>                             | °C        | mg/kg               |
| 1a    | $o-FC_6H_4$                                                      | $C_{14}H_{12}FNO_3$                              | 135 - 137 | 1000                |
| 1b    | $m-\mathrm{FC}_{6}\mathrm{H}_{4}$                                | $C_{14}H_{12}FNO_3$                              | 136 - 138 | 300                 |
| 1c    | $p-\mathrm{FC}_{6}\mathrm{H}_{4}$                                | $C_{14}H_{12}FNO_3$                              | 168 - 169 | 300                 |
| 3a    | $(CH_3)_2CH$                                                     | $C_{11}H_{16}O_5$                                | 127 - 129 | 300                 |
| 3b    | $o-\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4\mathrm{CH}_2$          | $\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{O}_{6}$   | 98 - 100  | 30                  |
| 3c    | m-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | $C_{16}H_{18}O_6$                                | 127 - 128 | 30                  |
| 3d    | p-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | $C_{16}H_{18}O_{6}$                              | 110 - 112 | 10                  |
| 3e    | $C_6H_3CH_2$                                                     | $\mathrm{C}_{15}\mathrm{H}_{16}\mathrm{O}_{5}$   | 122 - 124 | 30                  |
| 3f    | m-ClC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub>                | $C_{15}H_{15}ClO_5$                              | 143 - 145 | 30                  |
| 3g    | $p-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}$                | $\mathrm{C}_{15}\mathrm{H}_{15}\mathrm{ClO}_{5}$ | 158 - 160 | 30                  |
| 3h    | p-FC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub>                 | $C_{15}H_{15}FO_5$                               | 135 - 136 | 10                  |
| 3i    | $3,4-(OCH_2O)C_6H_3CH_2$                                         | $\mathrm{C_{16}H_{16}O_{7}}$                     | 145 - 147 | 10                  |

<sup>a</sup> All new compounds described gave elemental analyses for C and H within  $\pm 0.4\%$  of the calculated values. Ir and nmr spectra were also in agreement with the assigned structures; in particular, the nmr spectra confirmed the assignment of exo-cis stereochemistry.<sup>1</sup> <sup>b</sup> Uncorr; recorded on a Mel-Temp apparatus. <sup>c</sup> Dose at which fatalities occurred; compds were administered ip to mice.

 $150^\circ$  for 1–2 hr. The cooled residue was then recrystd from EtOH.

**Monoesters.** 3.—A mixture of anhydride and the appropriate alcohol was heated at  $125^{\circ}$  for 1-2 hr. The cooled residue was extd with aq Na<sub>2</sub>CO<sub>3</sub> and the aq extracts were acidified with HCl. The ppt was collected, washed with H<sub>2</sub>O, dried, and recrystd from an appropriate solvent, usually C<sub>6</sub>H<sub>6</sub>-Skelly B.

The *i*-Pr deriv **3a** was prepared by refluxing the anhydride in *i*-PrOH containing pyridine.

Potential Antidiabetics. 7. N<sup>1</sup>-(β-Hydroxybenzylmethyl)-3-methyl-4arylhydrazono-2-pyrazolin-5-ones and N<sup>1</sup>-(β-Hydroxybenzylmethyl)-3-methyl-4-arylazo-5-methyl- or -phenylpyrazoles

## H. G. GARG AND CHANDRA PRAKASH

## Department of Chemistry, University of Roorkee, Roorkee, India

## Received August 4, 1970

A few pyrazoles and related compounds appear to give promising results in antidiabetic tests<sup>1,2</sup> and, therefore, further combinations seem worthwhile studying. This paper describes the synthesis of  $N^{1-}(\beta$ -hydroxybenzylmethyl)-3-methyl-4-arylhydrazono-2-pyrazolin-5-ones and  $N^{1-}(\beta$ -hydroxybenzylmethyl)-3-methyl-4arylazo-5-methyl- or -phenylpyrazoles and also includes the hypoglycemic activity of 3-methyl-4-arylazo-5-phenylisoxazoles,<sup>2</sup>

**Biological Results.**—On oral administration at various doses (25–100 mg/kg) in fasted guinea pigs for 18 hr prior to and during testing, 4-phenylazo-, 4-(2-nitrophenylazo)-, 4-(3-nitrophenylazo)-, 4-(2-methylphenylazo)-, 4-(2-methoxyphenylazo)-, 4-(3-methoxyphenylazo)-, 4-(4-ethoxyphenylazo)-, 4-(2,5-dichlorophenylazo)-, and 4-(2,6-dichlorophenylazo)-3-methyl-5-phenylisoxazoles essentially displayed no hypoglycemic activity as compared with chloropropamide. After a predetermined time of peak effect the blood was ana-

<sup>\*</sup> To whom correspondence should be addressed.

<sup>(1)</sup> E. R. Bockstahler, L. C. Weaver, and D. L. Wright, J. Med. Chem., 11, 603 (1968).

<sup>(2)</sup> V. A. Kraft and N. N. Mel'nikov, Biol. Aktivn. Soedin., 255 (1965); Chem. Abstr., 64, 673g (1966).

<sup>(1)</sup> H. G. Garg, D.Sc. Thesis, Agra University, India (1969).

<sup>(2)</sup> H. G. Garg and P. P. Singh, J. Med. Chem., 13, 1250 (1970), and ref cited therein.